Mutual inductance and self-inductance
Mutual inductance occurs when two circuits are arranged so that the change in current in one causes an emf to be induced in the other.
Imagine a simple circuit of a switch, a coil, and a battery. When the switch is closed, the current through the coil sets up a magnetic field. As the current is increasing, the magnetic flux through the coil is also changing. This changing magnetic flux generates an emf opposing that of the battery. This effect occurs only while the current is either increasing to its steady state value immediately after the switch is closed or decreasing to zero when the switch is opened. This effect is called self-inductance. The proportional constant between the self-induced emf and the time rate of change of the current is called inductance (L) and is given by
The SI unit for inductance is the henry, and 1 henry = 1(Vs/A).
Using Faraday's law, inductance can be expressed in terms of the change of flux and current:
No comments:
Post a Comment